Weird Mathematical Object: Fractional Exponential

Weird Mathematical Object: Fractional Exponential


I described here a strange type of function, that is nowhere continuous but relatively easy to integrate using probabilistic arguments. I call it the fractional part of parameter p of a function g(x), and it is denoted as g(x, p). We focus here on g(x) = exp(x). It is obtained by removing a number of terms (usually infinitely many) in the Taylor series of g(x). For instance, by removing all terms associated with an odd exponent. Examples based on g(x) = exp(x) are provided below, and explained in details in my previous article, here.

Exp(x, p) respectively for p = 8/7, p = 4/7, and p = 2/7.
More specifically, the fractional part of parameter p, where p is any real number in [0, 2], is obtained by removing the k-th term (in the Taylor series) each time the k-th digit of p in base 2, is equal to 0. The first term corresponds to k = 0. Formally, for instance if g(x) = exp(x), it is defined as follows:

where b(k, p) is the k-th digit of p in base 2, with p in [0, 2]. This digit is equal either to 0 or 1. For instance, if p = 8/7 as in the first example (first formula in this article), then its binary digit in positions k = 0, 3, 6, 9 and so on, are all equal to 1; all other digits are 0. For any p in [0, 2], an exact formula is available for b(k, p), see here. Indeed, we have:

where the brackets represent the integer part function.
Curious properties of the fractional part of a function
Here we shift gears, looking at g(x, p) as a function of p, and considering x as a parameter. See Figure 1 as an illustration. This function is continuous nowhere. It is easy to notice discontinuity at p = 1, p = 3/2 or p = 3/4. Most of the time though, the jumps are too small to be noticed with the naked eye. Yet it is possible to integrate the function g(x, p) with respect to p. For instance,

One way to easily compute these integrals, is to consider b(k, p) as independent random variables uniformly distributed on {0, 1}. Indeed, the binary digits, when averaged over p in [0, 2], exhibit the same behavior as if they were randomly distributed. This is true for all p in [0, 2] except for a subset of measure 0, that includes numbers such as p = 3/4. While this seems rather intuitive, it is a consequence of the fact that almost all numbers are normal. See statement and proof of this fact here (this proof, published in 2010, is 12-page long.)

Figure 1: Fractional exponential (the X-axis represents p) computed for 4 values of x
For related articles from the same author, click here or visit www.VincentGranville.com. Follow me on on LinkedIn.
DSC Resources

Subscribe to our Newsletter
Comprehensive Repository of Data Science and ML Resources
Advanced Machine Learning with Basic Excel
Difference between ML, Data Science, AI, Deep Learning, and Statistics
Selected Business Analytics, Data Science and ML articles
Hire a Data Scientist | Search DSC | Classifieds | Find a Job
Post a Blog | Forum Questions


Link: Weird Mathematical Object: Fractional Exponential